欢迎访问云南西力生物技术股份有限公司!证券代码:871574
首页 成 果 源于西力产品的客户论文
Inhibition of p66Shc Oxidative Signaling via CA-Induced Upregulation of miR-203a-3p Alleviates Liver Fibrosis Progression. Mol. Ther. Nucleic Acids, 2020, 21: 751–763.
发布时间:2020-10-23 阅读数:297 来源:Mol. Ther. Nucleic Acids
分享到:

Abstract:

We previously found that inhibition of p66Shc confers protection against hepatic stellate cell (HSC) activation during liver fibrosis. However, the effect of p66Shc on HSC proliferation, as well as the mechanism by which p66Shc is modulated, remains unknown. Here, we elucidated the effect of p66Shc on HSC proliferation and evaluated microRNA (miRNA)-p66Shc-mediated reactive oxidative species (ROS) generation in liver fibrosis. An in vivo model of carbon tetrachloride (CCl4)-induced liver fibrosis in rats and an LX-2 cell model were developed. p66Shc expression was significantly upregulated in rats with CCl4-induced liver fibrosis and in human fibrotic livers. Additionally, p66Shc knockdown in vitro attenuated mitochondrial ROS generation and HSC proliferation. Interestingly, p66Shc promoted HSC proliferation via β-catenin dephosphorylation in vitro. MicroRNA (miR)-203a-3p, which was identified by microarray and bioinformatics analyses, directly inhibited p66Shc translation and attenuated HSC proliferation in vitro. Importantly, p66Shc was found to play an indispensable role in the protective effect of miR-203a-3p. Furthermore, carnosic acid (CA), the major antioxidant compound extracted from rosemary leaves, protected against CCl4-induced liver fibrosis through the miR-203a-3p/p66Shc axis. Collectively, these results suggest that p66Shc, which is directly suppressed by miR-203a-3p, is a key regulator of liver fibrosis. This finding may lead to the development of therapeutic targets for liver fibrosis.


ewm.jpg 微信公众号
11.jpg 移动官网
特别声明:禁止在未经同意情况下转载本网站信息,BioBioPha品牌产品均由西力生物独家生产与销售,仅用于科学研究或企业研发!
版权所有 2019-2020 云南西力生物技术股份有限公司 BioBioPha 滇ICP备09000810号-1滇公安备案号 53019002000069号
技术支持:奥远科技

联系客服